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MYOFIBROBLASTS: PARACRINE CELLS IMPORTANT IN
HEALTH AND DISEASE

D. W. POWELL

GALVESTON, TEXAS

INTRODUCTION
It is now recognized that there is phenotypic heterogeneity among

fibroblasts and that some express features of smooth muscle differen-
tiation (1-5). These cells are known now as myofibroblasts (6,7). Al-
though identified morphologically a century ago, we understand now
that these specialized fibroblasts constitute a family of paracrine cells
that play an important role in the regulation of fundamental processes
such as cell motility, proliferation, differentiation, apoptosis, morpho-
genesis, tissue repair, inflammation and the immune response (3,4).
They also take part in many disease states affecting many different
organs. There are similarities in their morphology and function regard-
less of the tissue in which they reside, yet, in these tissues, they also
express phenotypic and functional heterogeneity. In this article, we
will portray some of the similarities and differences in their biologic
functions, and indicate the role that these cells play in certain diseases.

DEFINITION OF A MYOFIBROBLAST
The simplest definition of myofibroblasts is that they are smooth

muscle-like fibroblasts. Some investigators define them as activated
smooth muscle cells (8,9); others call them lipocytes because of their
propensity to store retinoids (Vitamin A) (10). They are also known as
stellate cells due to a shape change when they are transiently differ-
entiated.

In both cell culture and in native tissues, myofibroblasts possess
several distinguishing morphologic characteristics (Figure 1). They
display prominent cytoplasmic actin microfilaments (stress fibers) and
are connected to each other by adherens and gap junctions (11). Thus,
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FIG. 1. (A) Transmission electron micrograph of an intestinal subepithelial myofibro-
blast (18Co). The cell membrane displays numerous caveolae, and the cytoplasm con-
tains stress fibers (bundles of actin microfilaments). The cytoplasm is rich in rough
endoplasmic reticulum, Golgi apparatus and mitochondria. (B) The nucleus of an acti-
vated myofibroblast shows multiple indentations. (C) Adherens and (D) gap junctions
are present between myofibroblasts. (Reproduced by permission from ref. 11.)

these cells often exist in tissues as a syncytium (Figure 2) (12,13). They
are also connected to the extracellular matrix (ECM) by focal contacts,
which are transmembrane complexes made up of intracellular contrac-
tile microfilaments and the ECM protein fibronectin (14). Both the
focal contacts (also called the fibronexus) and the stress fiber assembly
are regulated by Rho, a newly described member of the RAS super-
family of small guanosine triphosphatases (GTPases) (15). These
small, monomeric GTP-binding proteins also regulate myofibroblast
morphology (16). The cells are often found in close apposition to vari-
cosities of nerve fibers (17). Also, they may be connected to tissue
smooth muscle by gap junctions (18).

In the eye (the orbital myofibroblast) (19), the joint (the synoviocyte)
(20), the brain (astrocyte) (21), the liver (Ito cells) (22), and the intes-
tine (both the interstitial cells of Cajal (23) and the subepithelial
myofibroblasts (11)), the myofibroblasts exist in two distinct morpho-
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FIG. 2. (A) Intestinal stubepithelial myofibroblasts, as shown here with scanning
electron microscopy, are a syncytium of cells ( ) underneath the epithelial cells (EP)
which have been relmoved by freeze fracture. (Reproduced by permission from ref. 144)
B) Higher power viexx of the interconnecting fibroblast-like cells (FLC). (Reproduced by
petmiIIissioI from tref. 145.)

logical states (Figure 3): 1) "activated" myofibroblast, as described
above, and 2) stellate-transformed myofibroblast, a transiently differ-
entiated myofibroblast. Agents that increase the cyclic adenosine 3',5'
monophosphate (cyclic AMP) content of activated myofibroblasts (e.g.,
prostaglandins. cholera toxin, vasoactive intestinal polypeptide.) in-
duce stellate transformation in vitro within 24 hours (11) and stop
myofibroblast proliferation (24).
Immunocytochemical characterization of myofibroblasts is based on

antibody reactions to several antigens. As shown in Figure 4, neuroen-
docrine, endothelial and epithelial heritages are eliminated by nega-
tive reactions to chromogranins, Factor VIII and cytokeratin, respec-
tively (25). Two of the three filament systems of eukaryotic cells
(26,27), actin (a component of the microfilaments) and vimentin,
desmin, lamin or glial fibrillary acidic protein (GFAP) (members of the
intermediate filament system) differentiate myofibroblasts from
smooth muscle cells. Myofibroblasts have not been characterized with
regard to tubulins (proteins of the microtubules). Beta (,B) and gamma
(y) actins are expressed by all cells, including myofibroblasts. Myofi-
broblasts stain negatively for a-cardiac and a-skeletal actin (3), but
positively for a-smooth muscle (a-SM) actin (2). Myofibroblasts are not
well characterized with regard to the newly defined myosin isoforms
(28). In some tissues, such as the intestine and reticular cells of lymph
nodes and spleen, myofibroblasts stain positively for smooth muscle
heavy chain myosin or tropomyosin (3,23).

Expression of vimentin, desmin and a-SM actin, the three filaments
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FIG. 3. Hypothesis for the origin, transdifferentiation, activation and stellate trans-
formatioin of myofibroblasts. (Reproduced by permission from ref. 4.)

most often used to classify myofibroblasts, may vary in tissues. There
is also variable expression depending on whether the cells are studied
in situ or in culture and whether the cells are activated by hormones or
cytokines, or by disease. A classification system has been proposed
based on immunohistochemical staining ofthese filaments (3,29). Myo-
fibroblasts that express only vimentin are termed V-type myofibro-
blasts; those that express vimentin and desmin are called VD-type;
those expressing vimentin, a-SM actin and desmin are VAD-type and
those that express only vimentin and a-SM actin are called VA-type.
This classification suggests the possibility that myofibroblasts do not
always express (v-SM actin.
Monoclonal antibodies have been developed that identify myofibro-

blasts in certain tissues. For example, the monoclonal antibody Gb42
recognizes placental myofibroblasts (29), and 8E1 reacts with many of
the stellate-shaped myofibroblasts such as astrocytes and both intes-
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FIG. 4. Flow diagram illustrating the stepwise characterization of myofibroblasts.
(Reproduced by permission from ref. 25.)

tinal myofibroblasts, the interstitial cells of Cajal (ICC) and intestinal
subepithelial myofibroblasts (ISEMF) (30). Anti-GFAP antibodies will
stain astrocytes, pancreatic periacinar stellate cells and hepatic stel-
late (Ito) cells (31). The PR2D3 antibody stains subepithelial myofibro-
blasts in the stomach and intestine; lung myofibroblasts; periductular
myofibroblasts of the kidney, testes and breast; Ito cells of the liver;
umbilical cord stellate myofibroblasts; and both vascular and tissue
smooth muscle of most organs (32). Antibodies against the proto-
oncogene c-kit, the receptor for stem-cell factor (SCF or steel factor),
react with ICC (33).

ORIGIN OF MYOFIBROBLASTS
Myofibroblasts may originate from progenitor stem cells in the neu-

ral crest (34). Alternatively, they may simply transdifferentiate from
resident fibroblasts (6) or from tissue (e.g., vascular, intestinal, or
uterine) smooth muscle cells (35) (Figure 3). Transforming growth
factor beta (TGF-f3) seems to be the key in this transdifferentiating
process. Activation to an a-SM actin-expressing phenotype may re-
quire both TGF-,B and a specific cell-matrix interaction (36,37).

Platelet-derived growth factor (PDGF) and stem cell (Steel) factor
(SCF) have been shown to promote myofibroblast differentiation from
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embryonic stem cells. PDGF has two chains, A and B, and exists as
either homodimers (PDGF-AA or PDGF-BB) or as a heterodimer
(PDGF-AB). Each dimer acts on two different receptors: a which is
nondiscriminatory and can bind AA, BB and AB dimers, or ,B receptors
that are specific for the B chain (38). After ligand binding to the PDGF
receptor, there are two separate intercellular signaling pathways: a
mitogen-activated protein kinase (MAPK) path and a phosphatidylino-
sitol 3 kinase (PI-3 kinase) path. In certain cell types, one pathway
may be required for cell activation/proliferation and the other pathway
for cell motility (migration) (39).

ROLE OF MYOFIBROBLASTS IN GROWTH AND
DEVELOPMENT

Disruption of the PDGF-AA gene is lethal in 50% of affected mice
(40). The surviving animals develop a lung devoid of alveolar myofi-
broblasts (also called the pulmonary contractile interstitial cells).
These mice develop emphysema due to failure of lung septation. In
contrast, animals born with disruption of the PDGF-BB gene develop
a kidney devoid of renal mesangial cells, and the glomeruli in these
mice lack the typical complex structure (41,42). The PDGF-BB-defi-
cient animals also fail to develop pericytes, which leads to the forma-
tion of microaneurysms and leaky blood vessels, causing tissue edema
and hemorrhage (43).
The proto-oncogene c-kit is the transmembrane glycoprotein tyrosine

kinase (III) receptor for stem cell factor (SCF). SCF is a growth factor
secreted by epithelial cells, white blood cells and (myo)fibroblasts, and
it is also a member of the PDGF family. Intestinal interstitial cells of
Cajal (ICC) express c-kit (33,44) and mutations in the c-kit receptor
(the W-mutants) or in the ligand SCF (Steel mutants) results in ab-
normalities in the number, structure and the function of the ICC
(18,45).
Thus, the PDGF family of growth factors seems crucial for the

embryologic development of myofibroblasts. Unfortunately, no system-
atic study of all the different tissue myofibroblasts has been reported
in the PDGF or SCF knockout mice or in mutants of their respective
receptors.

ACTIVATION, PROLIFERATION AND MIGRATION OF
MYOFIBROBLASTS

Some fibroblasts and all stellate-transformed myofibroblasts become
activated and proliferate when cultured on plastic in serum-containing
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growth culture media, especially when seeded at low cell density (46).
When treated with TGF-,B, myofibroblasts from the intestine (47),
breast (48), skin (13), liver (22), lung (2), prostate (3), nose (49) and
synovium (2) express a-SM actin, reduce the number of vitamin A lipid
droplets, and expand the rough endoplasmic reticulum. These are the
morphologic characteristics of an activated myofibroblast. Conversely,
a and y-IFN (50,51) decrease the expression of a-SM actin in myofi-
broblasts. This down-regulation occurs either by transdifferentiating
myofibroblasts back to the fibroblast state, by inducing them to un-
dergo stellate transformation, or simply by down-regulating the
amount of a-SM actin in the cell.
TGF-,B appears to be the most important cytokine causing the de-

velopment of a-SM actin staining and an "activated" phenotype
(52,53). The source of TGF-,3 in damaged tissue may be from white
blood cells, parenchymal or epithelial cells, or from the myofibroblast
itself (52,53). The activation of the myofibroblast requires the presence
of matrix molecules, specifically, the ED-A (EIIIA) domain of fibronec-
tin (36,37), as a binding site for cell membranes and other matrix
molecules. This specific domain of a splice variant of fibronectin occurs
during tissue injury and is necessary for TGF-,B to trigger a-SM actin
expression and collagen secretion by myofibroblasts.
Following activation of the myofibroblast, PDGF or connective tissue

growth factor (CTGF), a member of the PDGF family, appear to be
the principal factors responsible for myofibroblast proliferation
(24,39,54,55). TGF-f3 was once considered the prime factor, but it is
now thought that TGF-f3 acts predominantly through the induction of
PDGF receptors on, or synthesis of CTGF, by the myofibroblasts
(39,54). TGF-f appears to be predominantly a cytodifferentiating
rather than a proliferating growth factor. Other growth factors, pro-
inflammatory cytokines and regulatory lipids have been incriminated
in the activation and proliferation of myofibroblasts, as well (Table 1).

ROLE IN WOUND REPAIR
The process of wound healing is a highly orchestrated sequence of

events in which myofibroblasts appear to be key cells. During wound
repair, there is the release of proinflammatory cytokines, eicosanoids
of the cyclooxygenase, lipoxygenase and cytochrome P450 families,
nitric oxide and a host of growth factors, as well as secretion of collagen
and other matrix proteins. There is elaboration of angiogenic, angio-
static and nerve growth factors and, if it is a deep or open wound, the
formation of granulation tissue which may become scar tissue (fibrosis)

277



D. W. POWELL

TABLE 1
Cytokilnes, Gr-owth Factor-s and Iniflammatory Mediators That Indulce Activation and

Pr olifer-ation of Myofibr-oblasts (4,5)

Cytokines Growth Factors Steroids Soluble Factors

IL- 1 TGF-a Aldosterone Thrombin
IL-4 TGF-,B Angiotensin II
IL-6 EGF Endothelin
IL-8 GM-CSF

PDGF-AA
PDGF-BB
aFGF
bFGF
IGF-I
IGF-II
SCF

IL-1 or 6, Interleukin 1 or 6; TGF- or ,B, transforming growth factor alpha or beta; EGF,
epidermal growth factor; GM-CSF, granulocyte-macrophage colony stimulating factor; PDGF,
platelet-derived growth factor; a or bFGF, acidic or basic fibroblast growth factor; IGF-I or II,
insulin-like growth factor I or II; SCF, stem cell factor.

(56-58). Myofibroblasts become activated and proliferate in the early
stages ofwounding. In response to proinflammatory cytokines secreted
by damaged epithelial cells and activated white blood cells, myofibro-
blasts then elaborate and secrete matrix proteins and additional
growth factors. Then they disappear by apoptosis following completion
of repair or scar formation (59-61).
Repair Processes. Epithelial tissues such as the intestine or

stomach are often superficially injured. In fact, exfoliation of the epi-
thelium is viewed as a defense response to certain noxious insults such
as toxins, microbiologic invasion or gut anaphylaxis (62). The process
of repair of the epithelium occurs through two separate mechanisms:
restitution and reconstitution (58). If the basement membrane under-
lying the sloughed epithelium is intact, epithelial cells at the edges of
the wound send out projections along the basement membrane until
they meet advancing epithelial cells from the other side of the wound.
This process is called restitution (63). Prostaglandins of myofibroblast
origin from cyclooxygenase 1 or 2 (COX-1 or 2) activation are key
factors promoting restitution (64) and in preserving the epithelial cells
from damage (65). Myofibroblast-secreted growth factors such as
TGF-f3, TGF-ax, EGF, aFGF and bFGF, and inflammatory cytokines
such as IL-1,B and interferon gamma (IFN--y) also promote restitution
(63,66-69).

If the wound is severe enough to destroy the subepithelial tissues
with its interstitial substance, blood vessels, nerves, and fibroblasts,
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healing must occur by reconstitution. If the basement membrane has
been destroyed, epithelial cells and myofibroblasts form a new base-
ment membrane (58). Epithelial stem cells then undergo mitosis, pro-
liferate and migrate along the newly formed basement membrane in
response to growth factors secreted by myofibroblasts. Thus, myofibro-
blasts appear to play roles in both the restitution and reconstitution
repair processes.
An important event in the process of wound repair by either resti-

tution or constitution is contraction of the underlying tissue to limit
the surface area of the damaged tissue (12,62,70,71). This is accom-
plished because the myofibroblasts are connected to each other in a
syncytium and because they contain a-smooth muscle actin and
smooth muscle myosin isoforms. The ability of myofibroblasts to con-
tract the tissue depends on changes in the cellular cytoskeleton (stress
fiber formation), as well formation of the Rho-regulated focal contacts
(fibronexus), and the expression of integrins which allow attachment of
the myofibroblasts to the extracellular matrix (70,71).

Extracellular matrix (ECM). The ECM is a complex mixture of
collagen, glycoproteins, and proteoglycans distributed in the tissue in
unique proportions (72,73). These matrix proteins serve several func-
tions. First, they are the scaffold for tissue formation. Through binding
to cell receptors (integrins), they initiate intercellular signaling events.
They bind to growth factors secreted into the damaged tissue. This
creates a reservoir of concentrated factors which drives epithelial or
parenchymal cell migration, proliferation and differentiation
(56,74,75).
There are 19 different collagens in the collagen superfamily. Types I,

III, IV, and VIII collagen are secreted by myofibroblasts (75,76). The
major glycoproteins secreted by the myofibroblasts are the laminins
such as fibronectin and tenascin. The basement membrane is com-
posed of laminin, type IV collagen, entactin and chondroitin sulfate, all
elaborated by (myo)fibroblasts, and perlecan, a large, low-density,
heparin-rich proteoglycan of epithelial cell origin (56,73). Basement
membranes and matrix are degraded by a family of Zn2 -dependent
matrix metalloproteinases (MMPs 1-3), also secreted by myofibro-
blasts (77,78). This promotes tissue remodeling following injury.
MMPs are classified by the substrates they degrade: MMP 1 digests
types I, II and III collagen; MMP 2 (gelatinase A) digests denatured
collagens I and III and native collagen IV; and MMP 3 (stromelysin)
degrades laminin, fibronectin, proteoglycans, type IV collagen and
casein (78,79). MMPs are regulated, in turn, by tissue inhibitors of
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metalloproteinases (TIMPs) that are also secreted by myofibroblasts
(79).
Growth factors may bind to heparan sulfate proteoglycans or to

collagen. This allows the matrix to control growth factor availability
both temporally and spatially, and this regulates the biologic activity
of these factors (56,71,73,74).

Growth Factors. The growth factors secreted by myofibroblasts
have three actions: 1) they initiate or increase cell mobility, 2) they
induce proliferation, and 3) they induce terminal differentiation of
cells, even driving the cells to apoptosis. Some growth factors seem to
have all three effects. These growth factors may act in an autocrine
fashion on the myofibroblasts themselves or, via a paracrine fashion,
on the epithelial or parenchymal cells in the tissue under repair.

Individual growth factors such as the trefoil proteins may be pro-
duced by the epithelial cells alone. Other growth factors are produced
only by mesenchymal cells (myofibroblasts or inflammatory cells, par-
ticularly macrophages and lymphocytes), and some are produced by
both mesenchymal and epithelial cells (17). Furthermore, the various
inflammatory cytokines (IL-1, IL-6, IL-15, TNF-a), eicosanoids (PGE2
and PGI2) and growth factors (EGF, TGF-a, IGF-I and -II, HGF and
KGF) released during tissue damage may directly affect the epithelium
or parenchymal cell of the injured tissue, or these agents may act on
the myofibroblasts to induce these cells to secrete additional cytokines,
eicosanoids or growth factors which then act on the epithelialparen-
chymal cells (17). Thus, in vivo, an epithelial proliferative response
could be the result of a cytodifferentiating effect of mediators on the
myofibroblasts, inducing them to express receptors or to secrete spe-
cific epithelial proliferating growth factors. For example, TGF-f31 in-
duces the expression ofPDGF or CTGF receptors on the myofibroblasts
causing them to proliferate in response to PDGF (80). Another example
is the secretion of HGF or KGF by myofibroblasts in response to IL-1
(81) or immune stimulation (82,83).
HGF and KGF have received special attention because they are

secreted by the underlying (myo)fibroblasts and have major prolifera-
tive effects on epithelial and parenchymal cells. Keratinocyte growth
factor (KGF) is a member of the fibroblast growth-factor family
(FGF-7) (84). This factor is unique because, unlike other members of
the FGF family, it does not appear to act on fibroblasts, endothelial
cells or other nonepithelial targets because these cells do not express
the KGF receptor (KGFR). KGFR expression is limited to epithelial
cells. KGF induces proliferation and differentiation of epithelial and
parenchymal cells, including intestinal epithelial cells, type II pneu-
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mocytes, hepatocytes and keratinocytes of the skin. Its expression and
secretion are regulated by IL-1 (81), and its synthesis is significantly
up-regulated in inflamed tissues (83). Thus, KGF represents a prime
example of a mediator released by mesenchymal cells and acting on
epithelial cells.
Hepatocyte growth factor (HGF) is another factor synthesized and

secreted by fibroblasts and myofibroblasts (85,86). The HGF receptor is
encoded by the proto-oncogene c-met and is prominently expressed by
epithelial cells. Like TGF-,3, HGF has effects on cell division, motility,
and apoptosis (85). Like KGF, its synthesis is also stimulated by IL-1
(85). In addition to proliferation effects on epithelial cells, it also affects
liver and bone (85). Thus, HGF, like KGF, is a major mediator of
epithelial-mesenchymal interactions and epithelial morphogenesis
(84).
The process of repair is terminated by the differentiation of epithe-

lial and parenchymal cells and by the eventual apoptosis of the ar-SM
actin myofibroblasts (59). The factors that terminate the repair process
are poorly understood, but a role for IL-10, INF--y and INF-a has been
suggested.

ROLE OF MYOFIBROBLASTS IN INFLAMMATORY
DISEASES

Myofibroblasts are incriminated in disease either because they are
absent (see above) or because they are activated (inflammatory states).
In endstage disease, these activated cells cause fibrosis (Table 2).

Myofibroblasts play a major role in the inflammatory response.
These cells are avid producers of both chemokines and proinflamma-
tory cytokines (4,5,87-89) and are capable of augmenting or down-
regulating the inflammatory response by the secretion of these soluble
mediators of inflammation. They also synthesize prostaglandins, ex-
pressing both the constitutive COX-1 (PHS-1) gene product and the
inducible COX-2 (PHS-2) protein (90-93). In some tissues they make
both NO and CO, important neurotransmitters and regulators of mo-
tility and inflammation (90,92,94-98). When activated, myofibroblasts
express adhesion molecules such as ICAM-1, VCAM and NCAM
(88,99,100). This allows lymphocytes, mast cells and neutrophils to
associate with the myofibroblasts and promote immunological and
inflammatory reactions (17,87,101,102). Through these or other prop-
erties, myofibroblasts participate in the formation of tissue granulo-
mas (57), which secrete cytokines and other inflammatory mediators
(103).
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TABLE 2
Role of Myofibroblasts in Disease (4)

Myofibroblast

Pericyte
Mesangial cell
Pulmonary interstitial cell
Intestinal interstitial cell of

Bone marrow stromal cell

Coronary pericyte
Gingival myofibroblast
Orbital myofibroblast
Retinal myofibroblast
Renal mesangial cell
Intestinal myofibroblast

Pulmonary interstitial cell
Joint synoviocyte

Skin

Corneal myofibroblast
Cardiac myofibroblast
Renal mesangial cell
Renal interstitial cell
Hepatic Ito cell
Pulmonary interstitial cell
Interstitial subepithelial

myofibroblast
Brain-atrophy
Bone marrow

Disease

Absent or Poorly Developed
Microaneurysm
Abnormal glomerulus
Emphysema

Cajal Hirschsprung's disease, hypertrophic pyloric
stenosis

Aplastic anemia

Activation and Proliferation
Restenosis
Gingival hypertrophy
Proptosis of Graves' disease
Proliferative vitreoretinopathy
Proliferative glomerulonephritis
Ischemic and radiation colitis, inflammatory
bowel disease

Diffuse alveolar damage
Rheumatoid arthritis

Fibrosis
Scleroderma, keloid, Dupuytren's

contracture
Corneal scarring
Myocardial fibrosis
Sclerosing glomerulonephritis
Renal tubular interstitial fibrosis
Cirrhosis
Pulmonary interstitial fibrosis
Collagenous colitis

Glial scar
Fibrosis of myelodysplasia

With repeated cycles of injury and repair or if there is loss of
regulation of the healing process, organ fibrosis occurs. The role of the
myofibroblasts in the fibrosis of the skin, lung, pancreas and kidney
are well described. Factors that act on myofibroblasts are important in
tissue fibrosis. The key role of TGF-, in fibrosis has been enforced by
the finding of fibrosis of multiple organs including the liver, kidney
(both renal interstitium and glomerulus) and in adipose tissue in a
transgenic mouse over-expressing TGF-,3 (53). PDGF-BB causes fibro-
sis in the kidney (104). Given TGF-,3's propensity to up regulate PDGF
receptors, PDGF may be as important as TGF-f in organ fibrosis.
IGF-I has been shown also to induce collagen mRNA and IGF-binding
protein-5 mRNA in rat intestinal smooth muscle (105), raising the
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question of an important role for this growth factor in organ fibrogen-
esis (106). The effects of PDGF, TGF-f3 and other growth factors in the
fibrotic process have been studied in detail and are beyond the scope of
this review (the reader is referred to refs. 56 and 107 for detailed
reviews of the fibrotic process).

ROLE OF MYOFIBROBLASTS IN COLONIC POLYPS AND
CANCER

Myofibroblasts are involved in the pathogenesis of intestinal inflam-
matory (hyperplastic) polyps, stromal tumors and hamartomatous tu-
mors. They are also the primary mesenchymal element of colonic
adenomas and cancer. Myofibroblasts undergo neoplastic transforma-
tion (108,109). The resulting mesenchymal tumors belong to the neo-
plasms previously called leiomyomas, leiomyosarcomas, fibrosarco-
mas, histiocytomas, spindle cell tumors and desmoid tumors. These
neoplasms are now categorized under a single encompassing term of
gastrointestinal stromal tumors (GISTs).

Myofibroblasts are the primary mesenchymal element in the lamina
propria of sporadic, hyperplastic, hamartomatous and adenomatous
polyps (3,110-112). They are also found in inherited neoplasms such
as juvenile polyposis, Peutz-Jeghers syndrome and familial polyposis
(110,111,113).

Intestinal pericryptal fibroblasts are believed to be important in
local tumor growth patterns of colorectal neoplasms and in the meta-
static process (114,115). Myofibroblasts appear to be responsible for
the desmoplastic (fibrotic) reactions seen in many colon cancers
(116,117). Intestinal myofibroblasts have been proposed to play an
important role in tumor metastasis, in part by the secretion of MMPs
which would promote detachment of tumor cells (67,118-126). There
are several other proposed mechanisms whereby myofibroblasts might
control the metastatic potential of cancer. Perhaps the most important
possibility is that TGF-f3 secreted by tumor myofibroblasts may di-
rectly stimulate tumor cell motility (67,125,126).
The TGF-, Type II receptor (TGF-,B RII) is mutated or absent in

many colon carcinomas. Because TGF-,B induces apoptotic cell death in
many epithelial cells, such mutations might allow unregulated tumor
development (127,128). Patients with colorectal cancer often have in-
creased plasma levels of TGF-,B, and this appears to be of lamina
propria (? myofibroblast) origin (129). Because TGF-f3 production and
receptors may be of either myofibroblast or epithelial origin, more
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definition of this area is needed to sort out the role of this growth
hormone and its receptors in colorectal cancer.
An important relationship between myofibroblasts and colorectal

cancer is an understanding of the mechanisms whereby nonsteroidal
anti-inflammatory drugs (NSAIDs) cause regression of polyps in famil-
ial adenomatous polyposis (FAP) (130-133) and the mechanism of
NSAID chemoprevention of sporadic colon cancer (134-136). The
mechanisms of this anti-tumorigenic and chemopreventive effect is
unclear. The most recent hypothesis is that NSAIDs cause increased
apoptosis of colonic epithelial cells (137-140) through inhibition of PG
synthesis. This causes elevated arachidonic acid (AA) levels in the cell,
and AA stimulates the conversion of sphingomyelin to ceramide, a
known inducer of apoptosis (140). An alternative hypothesis is that
NSAIDs may cause apoptosis of growth factor-secreting intestinal
myofibroblasts, which leads secondarily to decreased epithelial prolif-
eration or increased epithelial apoptosis.
COX-1 is detected in both normal and malignant colonic epithelial

cells (65,141,142). COX-2 is rarely detectable in the normal colonic
epithelia, but is found in over 90% of colon cancers. COX-2 expression
is present in less than half of premalignant colonic polyps (141,142). In
the adenomatous polyposis coli (APC) knockout mouse, specific COX-2
inhibitors have been shown to suppress the development of intestinal
polyps (132). In these animals, the site of COX-2 expression is in the
subepithelial myofibroblasts (132). Recent studies suggest that myofi-
broblasts in sporadic colon cancers are an important site of COX-2
expression (143).

CONCLUSIONS
Myofibroblasts are ubiquitous cells with similar properties and func-

tions that play important roles in growth and development, wound
repair and disease. Their absence or their activation and proliferation
lead to specific diseases as outlined in Table 2. Their role in disease
states will be the subject of much investigation in the coming decade.
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DISCUSSION
DAVIS, Charlottesville: We have heard a lot here about cancers and infectious

disease. I'm thinking about some of the connective tissue diseases and I'm thinking here
about scleroderma with all of the dysmotility, the sclerosis, of course, of the skin, and
now the lungs that are such a major problem in those patients. I am wondering whether
this dysregulation here may play a role in that spectrum of diseases and might be an
object of treatment.
POWELL: Absolutely. Myofibroblasts have been identified as activated and present

in both the skin and in the various tissues of patients with scleroderma, as well as in
Dupuytren's contracture and some of the other fibrotic skin diseases. Also, it turn out
that the synovial cells of rheumatoid arthritis are also activated myofibroblasts. These
cells in many tissues and diseases are responding to immunologic challenge with an
inflammatory response and eventually going on to cause a fibrotic state.
WINCHESTER, Washington: Following on from that question, I saw something

about calcium channel blockers being used for Dupuytren's contracture. Do they have
any effect on the myofibroblasts?
POWELL: Possibly. Intestinal myofibroblasts have cyclic changes in calcium content,

presumably through calcium channels, and calcium levels regulate their ability to
contract and to have a contractile function. It makes sense that they would, indeed,
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perhaps be responsive to calcium channel blockers. I have not seen that paper. That is
a very interesting idea.
WINCHESTER: Actually, it was on the television that I saw it.
STEVENSON, Stanford: Immature fetuses do not scar and the question is what is it

about the cells in fetuses that make them such that they can be involved in wound
healing and not scarring? Is there something we can do to ourselves now that would help
us adults have wounds that heal without scarring?
POWELL: Well, it is pretty clear that these myofibroblasts have different stages of

either activation or resting (stellate transformation) and, in these different states, are
capable of varying amounts of extracellular matrix protein secretion. Depending on
whether or not they are growing and proliferating, activated and secreting inflammatory
mediators and collagen, or whether they are transiently differentiated and resting, may
determine their capability to cause scar. A newborn child's myofibroblasts may be in a
more stem-cell, proliferative state that is not secreting collagen or other extracellular
matrix proteins. This is an interesting idea that needs to be studied.


